

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Spring 2016
Lab 01 – Debugging

Assignment: Lab 01 – Debugging
Due Date: During discussion, February 8th through February 11th
Value: 10 points

In Lab 0, we logged onto GL and set up folders for 201 in your home
directory. We also created a simple Python program, and turned it in using
the submit command. We’ll be using many of these skills in this lab as well.

As we’ve discussed in class, testing and debugging your programs is a large
part of being a successful programmer. Sometimes, you may even have to
debug other people’s code!

In this lab, we’ll be creating two files: lab1.py will be a file you create, and

errors.py will be a file you copy into your directory, before finding and

fixing the errors it contains. Both files will be counted as part of the grade for
Lab 1.

CMSC 201 – Computer Science I for Majors Page 2

Part 1: Creating a complete Python program
You’ll learn how to copy files into your account from an instructor’s directory,
and you’ll write your first complete Python program. We’ll also learn a few
more useful emacs shortcuts.

Step 1:
The first thing you’ll do is download a file that will configure the emacs editor
we’ll be using, to customize the way the emacs program behaves. While in
your home directory, copy the .emacs file into your current folder by using

the cp command below (cp simply stands for “copy”).

 cp /afs/umbc.edu/users/k/k/k38/pub/cs201/.emacs .

There are three parts to the command, and all three are important:

1. “cp” is the command, and in this case it stands for copy

2. “afs/umbc.edu/users/k/k/k38/pub/cs201/.emacs” is

where the file you are copying is located
3. “.” (a single period) is where the file will be copied to

(In this case, to the current folder, and with the same filename.)

The period “.” in front of the file name indicates the file is a hidden file. If you

simply type ls, you won’t see it listed. To double check that you successfully
copied the file, you need to use the command ls -a. The -a means “all”

and will show all the files in that directory, even hidden ones.

CMSC 201 – Computer Science I for Majors Page 3

Step 2:
Next, you are going to create your first complete Python file, entirely from
scratch. First, create the lab1 folder using the mkdir command -- the

folder needs to be inside your Labs folder as well. (For a reminder of how

to create and navigate folders, refer to the instructions for Lab 0.)

Next, create a file called lab1.py by opening it up for editing with emacs:

 emacs lab1.py

You’ll want to reproduce all of the text below inside your lab1.py file,

making sure to include all of the “#” signs, and to follow the capitalization

shown.

Step 3:
If you haven’t already, update the information at the top of the file so that it
matches your details. Also make sure to replace “YOUR_NAME” in the

print() statement with your name.

CMSC 201 – Computer Science I for Majors Page 4

Step 4:

The pound symbols “#” you have in the lab1.py file are used to tell Python

that any text after the pound symbol on that line is a comment. Comments
are ignored by Python, and the text following a pound symbol does not need
to follow any of Python’s syntax rules.

Programmers use comments to explain what the code is doing, to leave notes
to themselves, and to document things about the code. For example, the
comments at the top of the file are called a “header comment block,” and
record who created the file, when, and what the file is supposed to do.

Step 5:
Let’s learn a few basic emacs commands. These commands are very useful
when you’re programming or working in emacs.

Below, you’ll find a reference sheet of the emacs commands covered so far.
You’ll also find a few commands that are useful in the terminal as well

Command Meaning
CTRL+A Go to the beginning of the current line
CTRL+E Go to the end of the current line
CTRL+K Remove everything on the line after the cursor (“kill”)
CTRL+Y Paste the line cut by the CTRL+K command (“yank”)
CTRL+X, CTRL+S Save the file and stay in emacs
CTRL+X, CTRL+C Save the files and close emacs

Here are some useful commands to use in the terminal (not in emacs)
"TAB"

in terminal
Hitting the tab key will autocomplete based on the
available filenames. For example, typing “emacs la”

and hitting tab will autocomplete “la” to “lab1.py”
"up arrow"

in terminal
Hitting the up arrow will recall your previous command
to the terminal. Hitting it again will pull up the
command before that one; repeat as necessary.

CMSC 201 – Computer Science I for Majors Page 5

Part 2: Finding and Fixing Code Errors
In this part of the lab, you’ll be working on a Python file full of errors. We’ll
first explain how to find them, and how to understand the error messages.
Following that, you’ll solve the errors on your own.

Step 6:
First, let’s try running the lab1.py file you have created. Save your file and
exit emacs. Before running your program, make sure you enable Python
version 3:
 /usr/bin/scl enable python33 bash

Step 7:

If you copied everything exactly, you will get an error like this:

linux3[11]% /usr/bin/scl enable python33 bash

bash-4.1$ python lab1.py

 File "lab1.py", line 14

 print("Hello, my name is YOUR_NAME)

 ^

SyntaxError: EOL while scanning string literal

There are a couple key pieces present in this error message:

1. We know the name of the file and the line on which the error occurred
In this case, it’s our lab1.py file, and the error is on line 14

2. Python has attempted to pinpoint the error even further for us, using
the “^” symbol you can see on the second-to-last line

3. Python has told us what kind of error it is, and some details:
a. It is a syntax error
b. Python reached EOL (End of Line)
c. While scanning a “string literal”

CMSC 201 – Computer Science I for Majors Page 6

Step 8:
Hopefully you’ve spotted the error already – the print() statement is

missing the closing quotation marks. To fix it, we’ll need to open lab1.py

again for editing.

Once you do that, take a look at the bottom of the screen, and you should
see something like this:

-UUU:----F1 lab1.py All L1 (Python)----------

The “L1” you see there stands for “Line 1” – the error was on line 14, so

move your cursor down until you’ve reached “L14” instead. Fix the error by

adding the closing quotation mark, and save and exit again.

Try running your program again – if you fixed the error correctly, it should
work and display the greeting you wrote.

If it doesn’t work, use what you’ve learned to find the “new” error and fix it.
Python often will only display the first error it finds, so you may find yourself
doing this when working on your assignments as well.

However, if there is more than one error, start with the message at the bottom
first. Fix that one error, and then try to run your program again.

CMSC 201 – Computer Science I for Majors Page 7

Step 9:
Now it’s time to put your bug fixing abilities to the test! Copy a file called
errors.py into your lab1 folder using the cp command.

 cp /afs/umbc.edu/users/k/k/k38/pub/cs201/errors.py .

Before you jump into trying to fix the bugs, take a moment to read the code
and figure out what the program should be doing. Then use your new
knowledge of finding and fixing bugs to create an errors.py file that runs

without any errors.

Step 10:
Once errors.py works, add two lines to the file’s header comment block.
 # Fixed by: YOUR_NAME

 # Date fixed: TODAYS_DATE

Step 11:
Test your fixed errors.py Python program with different inputs to ensure

that is runs correctly. Make sure you have enabled Python version 3 before
testing:
 /usr/bin/scl enable python33 bash

If your testing finds a bug, fix it, and try running the program again.

(HINT: For different inputs, try big numbers and negative numbers.
Remember than an integer is a whole number, so your program won’t work if
you give it decimals or letters.)

(REMINDER: The headers of your files (the block of comments at the top) are
very important. Double check that you have correctly completed the headers
for the errors.py and lab1.py files.)

CMSC 201 – Computer Science I for Majors Page 8

Part 3: Completing Your Lab

Since this is an in-person lab, you do not need to use the submit command

to complete your lab. Instead, raise your hand to let your TA know that you
are finished.

They will come over and check your work – they may ask you to run your
program for them, and they may also want to see your code. Once they’ve
checked your work, they’ll give you a score for the lab, and you are free to
leave.

IMPORTANT: If you leave the lab without the TA checking
your work, you will receive a zero for this week’s lab. Make
sure you have been given a grade before you leave!

